Laplace approximation of Lauricella functions F A and F D
نویسندگان
چکیده
The Lauricella functions, which are generalizations of the Gauss hypergeometric function 2F1, arise naturally in many areas of mathematics and statistics. So far as we are aware, there is little or nothing in the literature on how to calculate numerical approximations for these functions outside those cases in which a simple one-dimensional integral representation or a one-dimensional series representation is available. In this paper we present first-order and second-order Laplace approximations to the Lauricella functions F (n) A and F (n) D . Our extensive numerical results show that these approximations achieve surprisingly good accuracy in a wide variety of examples, including cases well outside the asymptotic framework within which the approximations were derived. Moreover, it turns out that the second-order Laplace approximations are usually more accurate than their first-order versions. The numerical results are complemented by theoretical investigations which suggest that the approximations have good relative error properties outside the asymptotic regimes within which they were derived, including in certain cases where the dimension n goes to infinity.
منابع مشابه
A method to obtain the best uniform polynomial approximation for the family of rational function
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملApproximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملThe Roman domination and domatic numbers of a digraph
A Roman dominating function (RDF) on a digraph $D$ is a function $f: V(D)rightarrow {0,1,2}$ satisfying the condition that every vertex $v$ with $f(v)=0$ has an in-neighbor $u$ with $f(u)=2$. The weight of an RDF $f$ is the value $sum_{vin V(D)}f(v)$. The Roman domination number of a digraph $D$ is the minimum weight of an RDF on $D$. A set ${f_1,f_2,dots,f_d}$ of Roman dominating functions on ...
متن کاملBounds for CDFs of Order Statistics Arising from INID Random Variables
In recent decades, studying order statistics arising from independent and not necessary identically distributed (INID) random variables has been a main concern for researchers. A cumulative distribution function (CDF) of these random variables (Fi:n) is a complex manipulating, long time consuming and a software-intensive tool that takes more and more times. Therefore, obtaining approximations a...
متن کاملSuper- and sub-additive transformations of aggregation functions from the point of view of approximation
The way super- and sub-additive transformations of aggregation functions are introduced involve suprema and infima taken over simplexes whose dimensions may grow arbitrarily. Exact values of such transformations may thus be hard to determine in general. In this note we discuss methods of algorithmic approximation of such transformations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Comput. Math.
دوره 41 شماره
صفحات -
تاریخ انتشار 2015